
Visual PLC
Productivity tools

Programmer’s

Guide

 Editor
 Language
 Instruction Set

Ver 7.xx
ARSoft international - Copyright © 1999

Page 2

Page 3

Structure of programs and datas..5

VPU Files (Visual Pascal Unit) .. 5
MVARGLOB.VPU .. 5

Presentation of the editor..6
First Step...7

Project definition ... 7
Second Step..8

Declare the process variables (Globals variables). .. 8
The Types of Variables available in Visual PLC.. 9

Third Step..10
Writing a Program in Ladder.. 10
Loading the real time engine. .. 11
Loading the real time engine. .. 12
Mnemonics ... 13
Invert Input or output parameter of a functional module 13
Blocks of Programs (in line) .. 14
Possibility of testing if the input is true in the program block.................................. 14
Writing a program in Grafcet... 15
Create a GRAFCET ... 15
Renum steps... 16
Instructions and variables concerning a Grafcet ... 16
Grafcet variables can be used by other programs ... 17
Use of external functions in Grafcet.. 18

Introduction to the Pascal Language ...19
Textual commentaries .. 19
Identifiers .. 20
Declarations ... 20
Boolean types :... 21
Arrays.. 21
Character strings... 21
The operators ... 22
The arithmetical operators .. 22
Character string operator.. 22
Logic operators ... 23
The boolean operators.. 23
Tips & tricks ... 23
The Relational Operators .. 24
Instructions .. 24
Simple Instructions.. 24
Affectations .. 24
Call of a procedure .. 24
Compound statements ... 25
IF THEN ELSE Statement .. 25
REPEAT UNTIL Statement ... 26
WHILE DO Statement... 26
CASE OF Statement ... 26
FOR TO /DOWNTO Statement.. 27
Procedures and functions.. 28

Writing functional modules ...29
Philosophy of a functional module .. 29
Programming in a functional module .. 30
Test equation in Ladder validating the functional module....................................... 31
System Variables... 31
To quit the functional module .. 31
Examples of functional modules... 32
Tables transfer and typecast ... 33

Page 4

Transfer a table in another table.. 34
Transfer of variables .. 35
Shift bits to left in consecutives words. ... 36
Call functions and procedure in a library VPU... 37
Compiling a functional module... 37
Cross references ... 40

Statuts of the real time engine ..41
Adding a program to the real time engine ... 42
Programs execution order of in the real time engine ... 43
Saving the configuration of the real time engine .. 43
Loading the configuration in the real time engine ... 43

Writing cyclical programs in Pascal language ..44
The USES clause ... 44

Cyclical programs with interface ..45
Writing VPU libraries..47

Initialization in a library.. 48
Passing parameters by values and address.. 48

Calling procedures and functions in a DLL ...50
To redefine the name of the function contained in a DLL 50
Localization of a DLL .. 50

Example of Visual PLC variable allocated in an external DLL ...51
Launching the real time engine automatically ..52
Visualization of programs loaded...53
Profibus Configuration tool for DPC102 Profibus card ..54

Setting the equipment parameters ... 55
Test of the Profibus card and ScanDP. .. 55
Testing the communication with connected Profibus equipment 56
Dangerous Interactions with Visual PLC .. 56

Maintenance of data...57
To add a password protecting the editor...59

Page 5

Structure of programs and datas

With Arsoft’s compiler included, Visual PLC works differently to most traditional programs.

All programs you write will be compiled at maximum speed, which means they are without external
and additionnal programs.

Each program (Ladder, Grafcet, Language etc….) will be checked for syntax errors, and then will be
compiled in a file extension (.VPU).

VPU Files (Visual Pascal Unit)

These files are the result of program compilations. Once compiled, they contain all the variables and
procedures declarations to be operated by the real time kernel or with other VPUs. A VPU could be
the declaration of the application’s global variables in its simplest form. It could also be procedures or
functions that you created for use in other programs. With the VPUs ‘pre-compiled’, programs using
them do not need to have their source codes for running. It is impossible to know in what language a
VPU has been written. We will see later on that VPUs have an Interface part and an Implementation
part.

Interfacing is the declaration of the variables or procedures that can be accessed by other VPUs. The
implementation is the real part of the code.

The ‘Driver’ programs communicating with the embedded cards in your PC are also VPUs allowing
you to interface with physical elements (I/O) and the Input/Output image table that uses the program.

MVARGLOB.VPU

Within the Visual PLC package, Mvarglob.VPU is the basic file containing all the process variables,
such as the input/output image table, internal variables, bits of the active steps and their activation
time. Before starting to develop a program in Ladder, Grafcet or indeed any other packages, you need
to declare the variables with the help of the Global Variable editor.

Models of variables (pre-definitions) are implemented.
With starting a new project, you can choose a model of variables (Schneider, Siemens, Allen Bradley
Etc..).
You can also add your own variables to this model.

Page 6

Presentation of the editor

The list of Ladders, Grafcets, Functional Modules,
Programs (in Pascal language) and global variables
appear in the navigator. You can double click the
items for their display and their modification.
Click on ‘new button’ for a creation.

New Ladder, grafcet or program.

Show or hide the navigator

Display area for programs
Resize Windows

To compile the program in
the current window

Tools to copy, paste, undo, Find,
Replace, Prints, Print preview and

Zooms.

Definition of the Mnemonics

Page 7

First Step

Project definition

Before programming, you must define a project. This project will contain a title and the physical path
on your hard disk. If no project is defined in the launching of the editor, this window appears
automatically.

Click on Project Change to change or define a new project

To change the current project, double-click in the left hand list
(Existing Projects).

Note :
While clicking on a project in the left list and by striking key, the project and its contents are
completely erased.

When creating a new project, the specified directory is created on the disc and all the files contained in
the installation directory under ‘Modules’ sub-directory (ex:C:\api32\Modules) are copied in the new
project directory.

It will contain all the functional Modules delivered.

Stike here the the new project name and
its directory

Use the Navigator
to choose an
existing directory

Page 8

Second Step

Declare the process variables (Globals variables).

Note : All Ladder Programs, and Grafcets refer to the globals variables.

A variable can be initialised.

Example : Consigne : Integer=1000 ;

Double-Click on Variables
icon. A window appears to
propose predefined
models of variables.

The system creates a list
of variables

corresponding to the
specific PLC.

The user can constantly
remove or add a variable
of your choice and write

the variable at the end of
the list or use the help of

the assistant.

Assistant to add a variable

Compiling Variables.
(Mvarglob.VPU is created)

Page 9

The Types of Variables available in Visual PLC

Boolean : Byte (True=1 False=0).
Byte : Byte 8 bits. (Bits 0 to 7)
Word : Word 16 bits. (Bits 0 to 15).
Integer : Integer 32 Bits. (Bits 0 to 31). -2147483648 to 2147483647
Real : Float. (10 bytes) 1,9x10-4951 to 1,1x104932
Single : Float 1.5e-45..3.4e38 (4 bytes)

String : String of 255 characters. (1 to 255).
Array : Array of variables define above.
 Example : Array [0..12] of Boolean;

Boolean

MBool : Boolean;
MBool:=True; MBool:=False; equivalent to Mbool:=1; Mbool:=0;

Byte
By : Byte; By:=12;

Word
Wd : Word; WD:=12000; WD:=$F012;

Integer
It : Integer ;
It:=255; It:=$FF; Numerical value allocation;

 It.0:=True; It.4:=False; Bit of Integer allocation;

Real, Single
 RL : Real; RL:=-12.40;
 SL : Single ; SL :=456.89 ;

String
 ST : String; ST:='Visual PLC'; ST:='C:\WinNt';

Array
 AMBOOL: Array [0..10] of Boolean; AMBool[1]:=True;

 ABY : Array [1..50] of Byte; ABY[2]:=34;

AWD : Array [1..50] of Word; AWD[2]:=12034;

AIT : Array [1..30] of Integer; AIT[4]:=-255; AIT[5].0 :=True;

ARL : Array [2..14] of Real; ARL[2]:=-34.6789;

 AST : Array [0..6] of String; AST[2]:='Bonjour';

Contrary to others Soflogic, Visual PLC is allowed address Bit in a word.

Example: W10.0 (First bit of word « W10 ») .

Page 10

Third Step

Writing a Program in Ladder

Having defined the global variables and internal variables in the Mvarglob.VPU, it is possible to write
programs in Ladder (which will be also VPUs).

A window appears to be allowed to write a program in Ladder. A toolbar appears below the standard
bar. The programs written in Ladder are organized in consecutives segments, allowing the constitution
of cross references.

Click on the New button.
Choose new ladder.

NO
contact

NC
Contact

Positive
Edge

Negative
 Edge

continuity

Vertical
Branch

Links
(Continuity

Coil Set
Reset

Invert
I/O module

Fonctionnal
Module

Comment

In line
Program

New
Segment

Page 11

Blinking Program

During the first compilation, the system requires a name for this program. So a dialog box appears.
On each Compilation, the system saves the program then compiles it by creating a compiled file with a
VPU extension.

Bring the list of the
variables for a Drag
& Drop on the
contact. The striking
of the contact is also
possible above the
contact.

Bring the functional module
Blinker by Drag & Drop.

Place a
coil to output by using bit 1 of

MW10 word (MW10.0).

Strike the value ‘time Base’ of
the module (in 1/10 seconds).

Here 5 (0.5 Seconds).
Finally compile your Ladder by
clicking on the ‘Compile’ button

Compilation current Ladder (Visible).

Page 12

Loading the real time engine.

After compilation, click on the ‘Load’ button, to load LAD1 in the real time engine.

Note : Save the lists of visualized variables (Save button).

Other :In our example 2 functional modules are in cascades. Visual PLC allows the cascade of
modules without assignment of intermediate variables.
The functional modules require variables in parameters (Variables or constants).
If the programmer decides not to affect variables, the compiler creates automatically ghost variables
making it possible that the module runs normally. These ghost variables will be visible in visu-
dynamics but not exploitable by programs.

Run/Stop Lad1 in
the engine.

In Run visudyn. is available.

By a right click with the mouse, a floating menu
appears allowing invert the state of the pointed bit.
Here MW10.0 is forced to 1 (true)

A grid for visualisation &
Forcing is also available by
selecting ‘Visu Variables’ in the
floating menu. These
commands are also available
in the main menu of Visual
PLC

Page 13

Mnemonics
MW10.0, MW10.1 and MW10.2 are not very significant names. Visual PLC allows assigning
mnemonics to these variables or these bits of variables. While clicking on the button ‘mnemonic’, a
window appears:

These mnemonics is usable in programming instead of the names of variables.

Invert Input or output parameter of a functional module

This command is allowed to invert the input or the output of a bit parameter in a functional module.
1 / place the cursor on the selected bit parameter of the module then click on this button

 Before After

Example: Transforms an AND Bloc to a NAND Bloc.

Page 14

Blocks of Programs (in line)

It is possible to insert blocks of programs in a Ladder.

Click on the Bloc button Programs, then place this block (empty) in the current Ladder

Double-click on this block, a program editor appears:

In this case, the result of the input is sent to the output.
Possibility of testing if the input is true in the program block.

Note :
 You can affect the output of the program block by setting result to false or true. If nothing is done, the
output (result) is always true.

Example :
 If Entry Then Result :=True
 Else Result :=False ;
Follow the input block program.

This program block always valid its output even if the input is False (0).

The reserved word ENTRY (Boolean) allows to test
the input of the program block and to react
consequently.

Here test MW13>50 is executed if the input of the
program block is true.

Page 15

Fourth Step

Writing a program in Grafcet

After having defined global variables and internal variables in MVarglob.VPU, it is possible to write
programs in Grafcet (which will be also VPUs files).

The Grafcet editor commands bar

Uses Vpu: Allow you to use external function & procedures in libraries

Create a GRAFCET

Click on the new button in
the main bar of commands.
A dialog box appears.
Select Grafcet then click on
button OK

Include
Functions in libraries.

Choose element in the bar of commands, the element will be
positioned on the screen then place the original onet.
 It’s the design part.
Note: The main step can be positioned only at the first line.

Double-Click on the selected element,
a step and a transition.
An editor code appears. Proceed in the same way on all elements of
Grafcet.

If the transitions do not contain
code, the system initializes them to
be True.

Simple Step

Transition

Divergence
In OR

Convergence
OR

Divergence
In AND

Convergence
AND

Main
Step

Jump
To Step

Continuity

Comments

Renum
Steps

Page 16

Important note:

The divergences of Grafcet can leave only the main stage and return aligned below the main step to
the line.
Grafcet cannot be center on vertical symmetry axis.

Visual PLC allows the programming in Grafcet. It has something to do with the established Grafcet
standards, but can treat all particulars cases which remain the responsibility for the programmer.

Grafcet contains transitions equations, which are programmed into literal language using instructions
AND OR NOT. All advanced functions come from VPU’s libraries.

One can have a simple equation like : I0.0 And I0.1 (Also possible I0.0 & I0.1)
A complex equation like : I0.0 and MyFunction(W0,12,Tab[1])

Myfunction is a function located in a VPU file.

Visual PLC will be a sequencer and find its complex equations in ladder diagram with contacts
validating the transitions.
Visual PLC is allowed to receive a complete program using the same instructions in its steps as the
instructions are accessible by the libraries.
For example, the complete instruction set of the PASCAL language. The programs written in Grafcet
are compiled like all other programs and are stored with VPU format.

The real time engine loading the VPU cannot know if this program is written in Grafcet or Ladder or
other language.

Renum steps

The editor renum the steps as well as the corresponding numbers.
The numbers of steps are fixed by the system by automatic renum (click on button Renum steps).

Attention this function is under the responsibility of the programmer.
Indeed as with each step Boolean (bit) reflecting the state, this bit can be well exploited in others
programs. The renum does not modify these bits and their exploitations in the other programs.

Instructions and variables concerning a Grafcet
When you program in Grafcet, you can recover or affect certain information bits concerning it.

Detecting a step call

The START_STEP internal variable becomes true when the step is called.
Placed in a step, this program allows the user to detect the validation of whatever step.

Ex: If Start_Step Then Counter:=0;

 { At the rising edge of the step the counter is reset.}

The activation time for a Grafcet step

The activation time for a step is contained in:

A variable array of integer type: TSTEP[X]. This array is accessible only in the Grafcet program itself.

Ex : If Tstep[1]>=10 Then Alert:=True;
{ If the time of activation of step 1 is >= 1seconde then the bit ‘Alert’ is set}

Page 17

Grafcet variables can be used by other programs

It is possible to test or affect the steps of a Grafcet. Visual PLC automatically creates an array of
Booleans and Integers corresponding with the states of the steps in the Grafcet as well as their
activation times.

Let’s suppose that your Grafcet is called MyGraf, and has 10 steps.
These steps are numbered 0 to 9.
Visual PLC created automatically two arrays in Mvarglob.pas :

MyGraf : Array [0..9] of Boolean; //** Steps States
TMyGraf : Array [0..9] of Integer; //** Time of activation of the

 current steps

MyGraf represents 10 steps’ states of MyGraf program.
TMyGraf represents 10 steps’ activation times of MyGraf program.

Ex: Reset a Grafcet :

For I:=0 to 9 do MyGraf[I]:=False;
{** with the For instruction, the program force all steps of Grafcet to 0 (false) **}

It is possible in a ladder to test if the Grafcet step is true.

Here a OR between 2 program steps of MyGraf is done.

In a transition of Grafcet, one can have an equation testing the step activation time.

If TMyGraf[2]>100 Then Mygraf[3]:=True;

If the step 2 is active more 10 seconds, the next step 3 is forced. Putting automatically the step 2 to
False if these 2 Steps are consecutives.

Page 18

Use of external functions in Grafcet.

The grafcet can call external functions which you would have written in a library. You must specify
the libraries which you want to use through the button ‘Uses VPU. Then the compiler can find these
functions and procedures.

Compile and load your GRAFCET in the real time engine in the same way of LADDER.

Double click in the list in left on the library which
you want to use. This library is placed in the list
of right-hand side. Thus you will be able to use
all the functions included in this library in yours
equations, transitions or steps.

Run/Stop all the programs in the real time
engine.

Page 19

Introduction to the Pascal Language

Background information

Completed with Visual I/O, the indispensable complementary tool for the Visual PLC package for all
your Man/Machine interfaces, Arsoft can boast of an extensive experience with Pascal Language. The
language set out in the IEC 1131 standard is close to the syntax used by Pascal, whose own language
existed well before this standard came into being. To keep close to home, Arsoft chose this language
to oppose to the definition laid out by the afore-mentioned standard. The Visual PLC user is able to
transfer something which has booted the program up in Visual PLC to Visual I/O easily. What’s more,
inter-connecting with the Windows system is becoming increasingly sought after and necessitates the
putting in place of mechanisms that go beyond those forecasts by standard IEC 1131. You will find
both the basic instructions (affectations, Loop For, If/Then/Else, Case etc.) and the possibility of
transtyping which have access to external DLLs and many other things.

Visual PLC’s Pascal compiler was designed for solving your automation problems. It is not an office
automation compiler! Arsoft’s compiler uses powerful algorithms to minimise and optimise the time it
takes for you to execute your programs.

Visual PLC’s compiler enables the:

• Optimisation of the generated code.
• Compilation at fast speed.
• Incremental compilation.
• Direct compilation without transforming the source code.
• Single pass compilation.
• Compilation with debugging information.
• Segmentation of the program in the VPU module that can be performed directly by the real time

engine.

Textual commentaries

The commentaries are texts ignored by the compiler. Their purpose is to help the user and inform
him/her of certain matters which are focused on in greater details.

The commentaries are placed in brackets { and }
 {This is a commentary} or with // characters before the comment.
 // this is another comment

Page 20

Identifiers

In order to write a program, one has to use identifiers that symbolise certain parts of its structure. A
Pascal identifier must have a maximum of 63 characters and start with a letter of the alphabet. These
characters are letters without accents, numbers and underlined characters. No distinction is made
between upper case and lower case letters hence ‘a’ and ‘A’ are identical.

The List of accepted characters :

 a à z A à Z
 0 à 9 et _

Here are some useful examples :

CallA TwoNumber ReadNextRecord Call_2

Here are some bad examples:

August { Letter with an accent } 1_Call { Starts with a number }

Call-Sp { The hyphen is forbidden }

Warning : One must not use reserved words or names of procedures and

functions defined by the language as identifiers.
Declarations

The declarations comprise 2 main elements:
 the constants (CONST) and the variables (VAR) .
These 2 elements can be written in any order and repeated several times.

The declarations are grouped together under one of the 2 afore-mentioned elements, which play a
lead role.
Each declaration ends with a semi-colon.

Example :
CONST
 MaxNum = 1235;
 Chaine = ‘Bonjour’;
Var
 I,J : Integer; {*** not initialize variable **}
 K,L : Word=1; {*** initialize variable**}

Page 21

Boolean types :

In automation mode the byte denomination corresponds to a Boolean in Visual PLC.
However, the bit of a byte is also a part of Visual PLC’s Booleans.
The Boolean types can only take 2 pre-defined values, FALSE and TRUE.
The ordinal values of FALSE and TRUE are 0 and 1 respectively.
 Output: BOOLEAN

If I0 is an Integer, I0.4 is a Boolean in Visual PLC.

Arrays

An array is a structure that groups elements of the same type together. The example below shows the

syntax of the arrays:

 Cash : Array [1..4] Of REAL
 SEMESTRE : Array [1..6] Of BOOLEAN

To access to an element of an array you pass via an indexation, for example, Cash[2]. In this case,
you work with the second real number of the Cash array.

Character strings

A character string is a series of characters whose number can vary from 1 to 255. You can assimilate
the string to an array of 256 elements. The first element, indice 0, contains the useful length of the
string.

The example below of syntax of a typical string :

 Chaine : STRING
 Ich : STRING ='Automatic'; {** initialize string **}

The 0 index returns the length of the string which is an ASCII value..

A character string is written between two apostrophes. If an apostrophe appears in the component of
the character string, a back up copy is taken.

Example :

 Var

 Msg : STRING;
BEGIN
 Msg : = 'Bonjour';
 Msg := 'Today' :
END;

To guage the length of a string, Pascal Length (Msg) has come up with a pre-defined facility for just
this purpose. In addition, you can also use the ordinal value of the 0 indice belonging to the Ord string
(Msg[0]) which returns 7 in the ‘Hello’ example.

If you group a string of 200 characters and another of 100 together, the last 45 characters will be lost.

Page 22

The operators

Below are listed all the keyboard operators :

Not, /, Mod, And, Shl, Shr +, -, Or, Xor, =, <>, >, <, <=, >=

Some of them will have the weighty task to carry out several sorts of different operations.

The arithmetical operators

The arithmetical operators carry out the 4 basic operations on numbers; addition, subtraction,
multiplication and division, and are all represented by their usual symbols with the exception of the
multiplication task which is represented by an asterisk *. Another operator is used for dividing: the
MOD operator, which oversees the rest of the division operation. Visual PLC simplifies arithmetical
calculations as far as possible. You can freely mix types. Similarly, the division of a 32-bit byte
(Integer) by a Real is possible. The compiler automatically transforms the arithmetical expression
when it finds different types in an equation.

Pay attention to rounding up in this case!
Dividing by 0 will not work in the system since it will just come back with the result 0.

Character string operator

The only operating symbol used by the character strings is the +, whose job it is to group strings,
characters and compact chains together. In each case, the regrouping of strings is limited to a length
of 255 characters.

Below is an example:

 TS :='Visual PLC'+' Real Time';

The result in TS is: ‘Visual PLC Real Time’

To test or affect an element from a character string, use the following syntax.
 String[X]

Example:

 If TS[1]='v' Then Ts[1]:='V';

Page 23

Logic operators

The logic operators display the complete results with full operands.

♦ And binary AND
♦ Or binary OR
♦ Xor exclusive OR
♦ Shl shiftof bits to the left
♦ Shr shift of bits to the right

Here is the truth table for AND OR and XOR :

SHL and SHR carry out the shifting of bits to the right or left of the whole numbers.
Example, I: = 5 SHL 1 gives a result of 10.
The departure byte in binary is 0000 0101, after the shifting the byte becomes 0000 1010. The bit
furthestmost to the left is lost.
On the other hand, if the shifting had been SHR 1, the result given would have been : 0000 0010. The
bit furthestmost to the right is lost.

The boolean operators

Boolean operands are used in conjunction with boolean operators.

ARRAY OF BOOLEAN OPERATORS

♦ And & and logic (This character & is valid as an logic operator)
♦ Or logic or
♦ Xor exclusive or
♦ Not negative

Example :
State: = I0.0 and Cde & Not (W0.12);

Tips & tricks

Affecting the result of a boolean.
Var
 V : Integer;
 Egal : Boolean ;
Begin
 V :=12 ;
 Egal : = (V=12); {*** Boolean Result affected to Egal **}
End ;

Page 24

The Relational Operators

The number of relational operators on sets are 4.

Array of all the relational operators combined

♦ = equals.
♦ <> different to.
♦ <= less than or equal to.
♦ >= more than or equal to.

Instructions

The instructions are actions executed inside of the block in order of programming.

You can distinguish between simple instructions:

 Affectations, procedure and function calls.

You can also distinguish between composed instructions:

 IF, CASE, REPEAT, WHILE, FOR.

Simple Instructions

The simple instructions are one of the followings:

• Affectation instructions.
• Procedure and function instructions.

Affectations

The instruction of affectation:= is allowed to load a variable by a new value. The former is an
expression of a compatible type with the variable.

Here is some examples:
TS :=’Hello’ ;
I :=12 ;
R :=12.3 ;

Call of a procedure

Such an instruction executes a procedure. The former is appointed by its identifier and, possibly, by a
list of arguments (formal parameters).

Here is the syntax:
If Button Then Initialize;

The number and the type of parameters passed in arguments of procedure have to correspond to
these describes called in the heading of the procedure.

Page 25

Compound statements

Compound instructions are composed of conditional instructions (IF,CASE), of repetitious instructions (REPEAT, FOR, WHILE).

IF THEN ELSE Statement

In Visual PLC the instruction IF THEN ELSE is always used.
The expression between the IF and THEN keywords must have a Boolean return type. If the
expression evaluates to True, the statement following then is executed.
First Case
If Counter=10 Then Counter:=0; // here the point comma must be placed
behind 0

If the variable Counter is equal to 10, Counter is reset.
In this case Else is not used, you must write the character ; behind the last instruction.

2nd Case
If Counter =10 Then Counter:=0 // not ; behind 0 because Else is present
 Else Counter:= Counter +1; // Last instruction Then ;

If the counter variable is equal to 10, Counter takes the value 0. Otherwise, counter increases.
In this case ‘not’ is at the end of the first line because Else is used in the second line.
Third Case :
If Counter =10 Then
Begin
 Counter:=0;
 Ok:=True;
End; // *** Last instruction Then ; ***
If Counter is equal to 10, execution of a series of instructions is included in the Begin End; block
In this case the character is present behind End because no Else is used.
Forth case :
If Counter =10 Then
Begin // First Block of instructions
 Counter:=0;
 Ok:=True;
End Else // not ; behind End because Else is present
Begin // Second Block of instructions
 Counter:= Counter +1;
 Ok:=False;
End; // last instruction then ; ***
If Counter is equal to 10, execution of a series of instructions is included in the Begin End; block;
Else execution of another instructions block.

Page 26

REPEAT UNTIL Statement

The repeat statement is used to execute a statement until a certain condition is reached.
The statement will be executed at least once.
The statements between repeat and until are executed until the Boolean expression is True.

Example:
Repeat
 Counter:= Counter+1;
 Ok:=False;
Until Counter =10; // *** ; needed

The next syntax is correct but useless. The Begin and the End are useless.
Repeat
 Begin
 Counter:= Counter+1;
 Ok:=False;
 End;
Until Counter:=10; // *** ; needed
The instruction Repeat Until is the neighbour of the instruction While Do.
However, in Repeat Until the block of instructions is executed at least once, because the test is at the
end of the block.

WHILE DO Statement

A while statement contains an expression that controls the repeated execution of a singular or
compound statement.
The syntax is WHILE Condition is True DO Something;
The expression is evaluated before the statement is executed, so if the expression is False at the
beginning, the statement is not executed.

Example:

While Counter <10 Do
Begin
 Counter:= Counter +1;
 Ok:=False;
End; // *** ; needed

CASE OF Statement

If one of the case constant values matches the value of the expression, the statement that follows this
constant is executed
After that, the program continues after the final end. If none of the case constants match the
expression value, the statement after the else keyword is executed

Example :
Begin
 Case Indice of
 1 : Order:=11;
 2 : Order:=22;
 3 : Order:=11;

100 : Order:=100;
 Else Order:=0; // *** Else is optional
 End;
End;
IF indice=1 then order receive the value 1.

Page 27

FOR TO /DOWNTO Statement
A for loop is used in case one wants to calculate something a fixed number of times
Statement can be a compound statement. When this statement is encountered, the control variable is
initialized with the initial value, and is compared with the final value. What happens next depends on
whether to or downto is used
In the case To is used, if the initial value is larger than the final value, Statement will never be
executed.
In the case DownTo is used, if the initial value is less than the final value, Statement will never be
executed.
The syntax is :
 For .. To/Downto … Do
Example:
 For I :=1 to 10 do Somme:=Somme+Tablo[I];
This loop goes from 1 to 10.

Example:
 For I :=10 DownTo 1 do Somme:=Somme+Tablo[I];
This loop goes from 10 to 1.

Page 28

Procedures and functions
Procedure statements are called subroutines. There are different possibilities for procedure calls. They
are necessary for the good comprehension of a program and to their maintenance. Procedures and
functions can be declared in the VPU library part and can use other functions in other VPU

Structure
A procedure is a program part that performs a specific action, often based on a set of parameters.
A function is a program part that computes and returns a value.
Procedures and functions are constituted of a heading and a block.
The heading is constituted by reserved word PROCEDURE or FUNCTION, followed by an identifier,
possibly of a list of arguments in parentheses, and for functions the type of the result returned.

Here is the syntax:

Procedure MyProc1(Element : String) ;
Procedure MyProc2(Var Element : String) ;
Function MyFunc (Number : Real) : Boolean ;

In the case of the MyProc1 procedure, the variable Element is sent to the procedure. This Variable
can be only read.
In the case of the MyProc2 procedure, the variable Element is sent to the procedure. This Variable
can be read and written.
In the case of the MyFunc function, the variable Number is sent to the function. This variable can be
read but not written.
This function returns a Boolean that can be tested or not by the instruction has called it.
Returns a result from a Function :
A function returns a typed result (Boolean, Real, Etc..).
This result is a variable created by the function itself. This result variable is a reserved word of the
Pascal language named RESULT.

Example:
Function Addition (V1,V2 : Real) : Real ;
Begin
 Result :=V1+V2 ;
End ;

Result: is the result variable of the function. In the case below Total will receive the result of the
Addition function in return.
Total :=Addition(10,20) ;

Page 29

Writing functional modules

Thanks to a particular philosophy, the functional module editor allows you to write blocks of programs
that can be assimilated to procedures with parameters. To write these functional modules you can use
Pascal language’s scope and power as well as call procedures and functions that you will have written
or that come externally. From simple equations to complex overlaps, Visual PLC can boast of a
language comparable to those which is used for development under the Windows environment.
However, the Arsoft compiler in the Visual PLC version is very much orientated towards automation
and optimising the boolean treatments and the type of variables that can be passed (eg: a bit in a
byte).
Philosophy of a functional module

A functional module is a black box performing a particular function. The box receives either input and
output parameters or nothing at all.
If the parameters are necessary, they can be put in the input or/and output of the module.

Let’s take the 100ms temporization as an example:

We notice that there are 2 parameters :

1 input parameter, preset, situated to the left of the module.
1 output parameter, ok, situated to the right of the module.

It appears that the input parameter is of a numerical nature and of a boolean type output.

Let’s call up the functional module editor to display the source of this temporization.
Double-Click on Tempo100 in the module explorer:

The source code is display.

Page 30

Programming in a functional module

Let’s examine the source code of the 100 ms temporization module:

The declaration of the parameters :
Type of input and output parameter

 Names of the input parameters Type of input and output parameter

In the two grids, write the names of the input and output parameters.
In the example above, Preset is an input parameter in Integer type and Ok is an output parameter in
Boolean type.

When you write a new input or output parameter, the Integer type will be displayed automatically. To
change the type, double click on the cell, thereby scrolling through all the possible new types.

POSSIBLE INPUT TYPES: INTEGER, BOOLEAN, STRING AND REAL
Possible output types: Integer, Boolean, String, Real and ALL

An Integer can receive numerical variables and constants of an Integer, Word, Byte and eventually
Real type.
If an input parameter is of an Integer type, and it receives a variable or constant of a real type, a
rounding up is automatically done upon the receipt of this value.

A Boolean can receive boolean variables or bits of a Integer (Integer, Word).
 Example: Cde or I0.0

A String can receive character string variables or constants.

A Real can receive all types of input numerical variables. These variables will be typecasted into float
value.

ALL can receive all types of output variable. This variable will be typecasting by the module. The
typecast will be viewed later.

While clicking on the button, the final display of the
module appears.

Output parameters’ names

Page 31

Test equation in Ladder validating the functional module

It is useful to test the validating conditions of the functional module. In other words, it is to be able to
know the result of the Ladder linked to the module.
The pre-defined variable ENTRY in Boolean type has the same state as the Ladder connected to the
module.

If ENTRY is True, that means that the Ladder linked to the module is true.

Let’s analyse the source code of the temporization

Var
 Cpt : Integer;
Begin
 If Entry=False Then If ENTRY is false(0), the
 Begin output bit is reset as well as
 Cpt:=0; the internal counter.
 OK:=FALSE;
 End;
 If Cpt<Preset Then Cpt:=Cpt+BT_100 If the internal counter is

 Else Ok:=True; less than the parameter value,
 End; add the elapsed time. If not, the output
 bit is True(1).
We can see that the module needs a saved internal variable. This variable is declared before the
beginning of the program. In the case of a functional module, all variables declared in this way are
saved when the program leaves the module.
We can declare all types of local variables (arrays, strings etc) in the module.
System Variables

ENTRY (Boolean) Has the same state of the Ladder linked to the

module.
BT_100 (Integer) Is true every 100ms for one cycle.
START_PROG (Boolean) Shows the first program cycle.

Attentions: in a functional module, the local variables in the module are not initialized.
We initialize these variables with the Start_Prog variable.

Example: If Start_Prog Then Cpt: =0;
To quit the functional module
The EXIT instruction allows you to leave a module without executing the rest of the program module.

Example: If Entry=False Then

Begin
 Cpt: =0;

 Ok: =False;
 Exit; {exit the module here }
End;

Page 32

Examples of functional modules

Simple counter:
Let’s consider a module which has only one output Integer parameter named Compte and we want to
count the pulses of the Ladder linked to this module.

If the program was written as follows:
Begin
 If Entry Then Compte: =Compte+1;
End;

The variable Compte will be increased for every cycle. You must insert a rising edge by declaring a
Boolean used as a rising edge.

Var
 Edge: Boolean; {Internal rising edge bit saved}
Begin
 If Entry and Not(Edge) Then {If the ENTRY variable is true and the Edg
 Begin variable is false, then the variable Compte increases.}
 Compte: =Compte+1;
 Edge: =True;
 End;
 If Not(Entry) Then Edge:=False; { If the ENTRY variable is false, the Edge variable is

 false.}
End;

Impulse:
Consider a module named ‘Top’ in parameter in output in Boolean type and we wanted to send pulses
every 100ms if the ladder is true.

Begin
 If Entry Then If the ladder is true, then execute the following block
 Begin
 If BT_100=1 Then Top: =True { If Bt_100=1 then Top is True (1)}
 Else Top: =False; { else top is False (0).}

 End Else Top: =False;
End;

Variant / Optimization:

Begin
 If Entry Then Top: =(BT_100=1)
 Else Top: =False;
End;

It is necessary to understand:
‘Top’ is a Boolean, we assign the result of the test (BT_100=1) which is true or false to this Boolean.

AND Block with 2 inputs:
Let us consider a module having 2 named parameters of input E1 and E2 and 1 parameter of output
named RES
All the parameters are Boolean type.

Begin
 If Entry Then Res: =E1 and E2
 Else Res: =False;
End;

Page 33

Tables transfer and typecast

Often in a functional module it is necessary to transfer one consecutive bytes into other consecutive
bytes. Or simply put an entire table back to zero.

Let’s take the transfer of a constant into an array of bytes (Integer) as an example.

Let’s consider that you have declared an array of integers in the global variables. This array is
displayed as follows:

 TWords: Array [0..12] of Integer

Construct a functional module to transfer a constant in this array.

Declare an input parameter called Cte of type Integer receiving the constant to transfer.
Declare an output parameter called Cible receiving the array. The problem is to choose a type for this
array. This is not a simple Integer since it is an array.
So we intervene the type ALL. This declaration allows you to pass all type of variable to this
functional module.

The program can be as follows:

Var
 I : Integer;
Begin
 If Entry Then
 Begin
 For I:=0 to 12 do Cible[I]:=Cte;
 End;
End;

Explanations :
For intruction scan all the array passed. As Cible is a type ALL parameter, it can be addressed by all
manners (Array of Boolean, Real, string etc.). To the compilation of the module, the compiler does not
know what its type is; the compiler guesses it by the employed syntax and by the affectation that it
receives.

Here since there are hooks ([I]) the compiler guesses that it is a table. Yes, but of what?
The compiler looks the type of variable that receives this array, it sees that it is an Integer, it deduces
that it is an array of Integer. This operation is called a simplified typecast.

Transfer a state in a array
We declare an array of Boolean in Global variables:

Tbits: Array [0..12] of Boolean;

The program is very similar to what have been described above. Simply the parameter of entry is an
Boolean and the array of exit is an array of Boolean. The typecast by the compiler is here the type
Boolean.

The program can be as follows:
Var
 I : Integer;
Begin
 If Entry Then
 Begin
 For I: =0 to 12 do Cible[I]: =Etat;
 End;
End;

Page 34

Transfer a table in another table

Consider that in global variable the arrays hereafter are declared:

TabSour : Array [1..20] of Integer;
TABTARGET : ARRAY [0..19] OF INTEGER;

2 arrays have the same dimension but do not begin to the same index.

A functional module allowed to transfer a table in another has to have 2 parameters of output in ALL
type.
Declare source and target as output parameters in ALL type.

The parameters of the fonctional module will be able to be this type by passing the first element of
TabSource and TabTarget.

The program in the fonctional module is :

Var
 i : Integer;

Begin
 IF ENTRY=FALSE THEN EXIT;
 For I: =1 To 4 Do
 TArrayInt(Target)[I]: =TArrayInt(Source)[I];
End;
As Target and Source are both of typical ALL, the compiler needs to know the types to compute.
TArrayInt (Source[I]) indicates to the compiler that Source is an array of Integer and thereby that
Target is the same type.
Here the program transfer 4 Integers from Source to Target.
This is a classic typecast of variables.

Already declared in Sysplc.pas used for typecasting
Type
 TArrayInt = Array [1..10] Of Integer;
 TArrayWord = Array [1..10] Of Word;
 TArrayByte = Array [1..10] Of Byte;
 TArrayBool = Array [1..10] Of Boolean;
 TArrayReal = Array [1..10] Of Real;

Other type of specification in ladder

Here the functional module will transfer 4 consecutive elements starting to
TabSour[2] into 4 consecutives elements starting to TabDest[4].

Other high speed transfer possibility the instruction MOVE :
The program of our functional module can be written like this

Begin
 If Entry Then MOVE(Source,Target,16);
End;

Transfers the content of the Source variable into the Target variable with a number of bytes. Here 4
integers=16 bytes.

The instruction Move copy a specified number of contiguous bytes (Count) from a source range to a
destination range. No range-checking is performed.

Page 35

Transfer of variables

Consider the existing array in global variables
I0,I1,I2,I3 : Integer;
O0,O1,O2,O3 : Integer;

The functional module described before being allowed to transfer values of an array into another
array. However as an array is composed by contiguous values, thanks to this functional module we
can transfer others contiguous values not belonging to the array.

In this case the specification in the ladder can also be as follows.
Since I0,I1,I2,I3 are declared consecutively,
it is possible for the functional module to take them as an array so as to transfer them into other
contiguous variables as O0,O1,O2,O3.

Test bits in contiguous variables

Consider a module allowing testing if one of the inputs of the process is to 1. Physical inputs of the
process are contained in variables I0,I1,I2,I3 of Integer type;

The module will be able to be as follows:

Input the number of words to test (Integer Type).
Output a bit is setting if one of the bits of source is detected to 1 (Boolean Type).
Output the first word to test (ALL Type).

Var
 I : INTEGER;
Begin
 ERROR:=FALSE;
 FOR I:=0 TO NB DO
 IF TARRAYINT(SOURCE)[I]<>0 THEN ERROR:=TRUE;
 End;

Page 36

Shift bits to left in consecutives words.

Consider a module allowed to shift to the left all the bits of contiguous words.
The program could be as follows:

Var
 I : Integer;
 Edge : Boolean;
Begin
 If Entry and Not(Edge) Then
 Begin
 For i:=3 Downto 0 do
 Begin

TArrayInt(Source)[I]:=TArrayInt(Source)[I] Shl 1;
 If I>0 Then
 If Source[I-1].31 Then Source[I].0:=True;
 End;
 Edge:=True;
 End;
 If Entry=False Then Edge:=False;
End;

Explanations :

If Entry and Not(Edge) Then
Allow you to do an edge when the connected Ladder is true.

For i: =3 Downto 0 do
Loop starting from 3 downto 0. Start on the last Integer to goto the first integer.

TArrayInt(Source)[I]:=TArrayInt(Source)[I] Shl 1;
 All the bits of the word in progress are shift of one position to the left.

If I>0 Then
 If Source[I-1].31 Then Source[I].0:=True;
If the pointer is not on the first word, we take the last bit of the preceding word; that report in the first
bit of the word in progress.

Here one processes words of 32 bits.

Page 37

Call functions and procedure in a library VPU.

We will see thereafter that it is possible to create its own functions and procedures in VPU library.
In a functional module it is possible to use procedures and functions localized in VPU libraries.
The Sound function allowing you to play a music by the sound card of your PC is programmed in the
library SysPLC.
In order that a functional module could use this procedure, it is necessary to indicate the name of the
VPU library containing the procedure.

Compiling a functional module

Compiling is done by clicking on the ‘zig zag button’. The result of this compilation is written in red in
the status zone at the bottom of the screen.

If an error is detected, an inverted video indicates where the compiler stops.
If no error is detected, the text ‘Compilation Ok’ is displayed at the bottom of the page and the module
with VPU extension file name is created and stored on the disc.

To indicate compiler in the functional module to include
procedures and functions of a library, bring by drag &
drop the library name wished in the list.
Here the procedure Sound of Sysplc library is used
and accepted by the compiler.

Page 38

Instruction set of the Pascal language for Visual PLC

The instructions set incorporates the compound statements described previously:
IF/THEN/ELSE REPEAT/UNTIL FOR/TO/DOWNTO CASE

Basic instructions

Arithmetic operations + - * /

Logical operations OR AND XOR

Shl To shift to left of X bits I:=J SHL 3;

Shr To shift to right of X bits I:=J SHR 3;

Not To invert a boolean I0.0:=Not(I0.1);

IntToStr To convert an Integer into Sting TS:=IntToStr(12);

StrToInt To convert a String into Integer I:=StrToInt('12');
FloatToStr To convert a Real into String
 TS:=FloatToStr(12.45);
IntToHex To convert an Integer into String representing a hexadecimal number
 TS:=IntToHex(I,Digits);
Move To transfer a series of consecutive bytes into another series

 MOVE(Source,Destination,Number);
Copy Copy part of a String into another String.
 TS:=Copy('Arsoft',3,4); {*** TS:='soft' ***}
Val To convert String into numerical value.
 Val(TS,I,Ok); {** I=Real OK=Integer); Si OK=0 I=correct value }
Pos Return the position of a text in a String.
 I:=Pos(TS,'soft'); {** I=3 si Ts='Arsoft' **}
Delete Erase a portion of the specified String
 Delete(TS,3,4); {** TS=Arsoft TS=Ar **}
EditInsert Insert String into another String
 EditInsert(TS,'Visual Plc ',1); {** TS='Arsoft' - TS='Visual PLC Arsoft' **}
Length Return the length of a String
 I:=Length('Arsoft'); {** I=6 **}
Addr,@ retrieves the address in memory of a variable A:=Addr(Counter); ou

 A:=@(Counter);

Chr Return character associated with the ASCII code.
 TS:=Chr(65); {*** TS='A' ***}
Ord Return the ASCII code of the specified character.
 I:=Ord('A'); {*** I=65 ***}
FillChar To fill a zone of the specified value.
 FillChar(Tablo,16,0); {*** Tablo : array [1..4] of integer The first 4

Elements of the table are put at 0 ***}
Cos Return cosine of the argument passed in radians R := Cos(Pi);

Sin Return sine of the argument passed in radians R := Sin(Pi);

Exp Return the exponential value of X. E := Exp(1.0);

Int Return the integer part of a real number. R := Int(123.456); { 123.0 }

Frac Return the decimal part of a Real. R := Frac(123.456); { 0.456 }

Trunc Truncate a Real in integer.

Page 39

DegToRad To convert degrees into radians R:=Cos(DegToRad(60));

Abs Return an absolute value. r := Abs(-2.3); { 2.3 }

ArcTan To calculate the arc-tangent of the value given. R := ArcTan(Pi);

Ln Return the natural logarithm of a real expression. E := Exp(1.0);

Sqr Return the square of a number.

Sqrt Return the square root of a number.

LoWord Return the low part 16 bits of an integer. W: =Loword(I);

HiWord Return the high part 16 bits of an integer. W: =Hiword(I);

Lo Return the low part 8 bits of an integer. W: =Lo(I); {0..255}

Hi Return the high part 8 bits of an integer. W: =Hi(I); {0..255}

Port When reading return the value of a physical port of I/O V:=Port($2F8);
 When writing affect a physical port of I/O by a value Port($2F8):=0;

Mem When reading return the value of an address memory

 V:=Mem($C800,0); {** reading of one byte **}
 When writing affect an address memory by a value

Mem($C800,0):=255; {** writing of one byte **}

Page 40

Cross references

You can get the list of the bits, constants and functional modules used in all the compiled programs
(Ladders, Grafcets, programs etc.). Click on the main menu Visualizations/Cross References

Explanations:

(LAD1) : Coil or activation by program.
LAD1 : Used like a ladder or in an expression.

Note: The cross references are done by the compiler (during the programs compilation phase).

You can ask for the entire cross references (the system scans all
the compiled programs in the current project directory.
You can also select only one program to scan.

201 variables used in programs

Page 41

Statuts of the real time engine

Programs are loaded up in the real time engine by the ‘load’ buttons in different editors (Ladder,
Grafcet).
However it is possible to load up the real time engine manually, particularly in the case of programs
written in high level language by the ‘Vpu libraries’ editor.

To change the time base for one of the programs, click on the cell to the left of the name of the
concerned program and type in the new desired time base. This time base has to be a multiple of
10ms or 2,4,6,8 ms.

In the top grid, the list of programs present in the real time engine appears. To the left, in the main
column, the time bases concerning each program are displayed. In this example, the LAD1 program is
running every 10 ms and Graf 1 every 100ms. The 2 programs are in Run and are in maximum priority in
your PC.
 It is possible to stop the program by striking ‘Stop’ in the statuts column and in the requisite cell.
You can delete a program in the real time engine by clicking on the name of the program and then
striking the key

Page 42

Adding a program to the real time engine

To add any program to the real time engine, use the Drag & Drop method to bring on screen the name
of the program concerned from the bottom list and put it in the top grid.

 By clicking on this button, all the programs present in the real time engine will be deleted.

This button allows you to set
all the programs of the real
time engine into Run or Stop
mode

Page 43

Programs execution order of in the real time engine

It is possible to organize the order in which programs are performed in the real time engine. In order to
do so, move the concerned program from the top list to the desired spot.

When you click the left button of the mouse, an inversion of the source
programs and target is performed. However at this step the real time
engine was still not affected. It is necessary to save the list of these
programs, then reload it in the engine through the 2 buttons in the
superior part.

Saving the configuration of the real time engine

TO SAVE THE LIST OF THE PROGRAMS DISPLAYED IN THE WINDOW, CLICK ON THE ‘SAVE
CURRENT CONFIGURATION’ BUTTON

The list of the programs is saved in the textual file PROG.PLC. This file will allow an automation to
load the engine at the Bootstrap of Windows. You can also save the list under another file name.

Loading the configuration in the real time engine

To load the last configuration in the real time engine, click on this button. It allows you to load the
engine with programs listed in the file ‘PROG.PLC’ or to choose in a list of files.

Click on the grey cell to the left of the
name of the program concerned. Then
move it to the necessary position. A
dark bar will appear.

Page 44

Writing cyclical programs in Pascal language

With Visual PLC, it is possible to write a cyclical program (VPU) to be loaded in the real time engine
with the same way as a program written in Ladder or Grafcet.

YOU CAN CALL THE PROGRAM EDITOR BY CLICKING ON THE NEW BUTTON AND SELECT
PROGRAM.

This editor is allowed to write libraries or cyclic programs, such as a program Clear the first line
containing the reserved word UNIT as well as the line containing the word INTERFACE.

A simple program can be:

Uses MVarglob; {** Use the global variables Mvarglob.Vpu **}
Begin {*** Beginning body of program ***}
 D0:=D0+1;
End. {*** End of body ***}

The USES clause

Each identifier in a uses clause is named as a unit used by the current program.
Example USE Mvarglob, Calcul, Personal; Indicate to the program that it can use all that is provided
by the libraries Mvarglob, Calcul and Personal.VPU.

The body of program
The body of program contains the instructions which must be called recurringly by the real time
engine. This body starts with a BEGIN and finishes with an END. (Followed by a point but not a
semicolon).

Compile the program with the help of the compiler button located in the tool bar :

The programs and libraries editor appears. A mask of
library is proposed.

Page 45

Cyclical programs with interface

Normally, a program cannot exchange variables or procedures since it uses these procedures,
functions or variables in the unit itself (private).
However Visual PLC allows you to mix programs and libraries.

Let’s consider that a program increased a word, and we wanted that it belonged to the program and it
is also accessible to other externals programs.

Let’s examine the code:

Interface
Var
 ID0 : Integer; {** variable accessible to external programs **}
Implementation
{*** Internal program function***}
Function Inc(Value : Integer) : Integer;
Begin
 Result:=Value+1;
End;
{** Body of program ***}
Begin
 ID0:=Inc(ID0);
End.

We can see that the Uses clause has disappeared because we are not using neither any global
variables nor any functions contained in other VPUs.

The INTERFACE clause has appeared. This clause allows us to indicate to the compiler that we want
to put variables, procedures or functions at the disposal of other programs. In our example, we simply
want to put an Integer type variable at the disposal of externals programs.
The interface section of a unit is a public part. It determines what is visible and accessible to any
program (or other unit) using that unit.
The interface section starts at the reserved word interface, which appears after the unit header, and
ends with the reserved word implementation.
In the unit interface, you declare constants, data types, variables, procedures, and functions.
The "bodies" of public procedures and functions are in the implementation section.

The IMPLEMENTATION clause allows you to determine the end of the interface and when to start up
the code and variables exclusive to the program but not accessible to the others (programs).

The implementation part of the unit is where you find the bodies of the procedures and functions that
are declared in the interface part of the unit.

The implementation part of the unit is a private part. Declarations made here can be used only within
this section of the unit.

Page 46

The Inc function allows you to increase a variable. This function can only be used in the program itself
because it is contained in the implementation part.
Finally, we get to the main part of the program which increased the IDO variable in running program.
Only when the noname3 program is loaded up in the real time engine, the IDO variable can now be
accessible under the same way as all Mvarglob VPU’s global variables.
That is the proof of the mixing of program and library.
Normally, a library does not contain a program, or it would not act as library.
This case can be useful to control the internal progress since it offers an IDO interface that can be a
command according to its state.
If you want to allow other programs to have access to the INC function, the program would be written
as follows:

Interface
Var
 ID0 : Integer; {** accessible variable to any program
**}
Function Inc(Value : Integer) : Integer; {** This function is now
accessible **}
Implementation
{*** Internal program function ***}
Function Inc(Value : Integer) : Integer;

Page 47

Writing VPU libraries

The principle seen before remains the same, but the only difference is that a library do not contain
cyclic program. A library is passive and export variables, procedures and functions.

Let us imagine a library named PERSONAL containing a procedure DEC. This one decreases a
numerical

.
Let us examine this code:
UNIT // indicate to the compiler that it is a library
Interface
 Procedure Dec (Var Value : Integer); // Procedure accessible to the other programs

Implementation

Procedure Dec (Var Value : Integer); // source Code of the DEC procedure
Begin
 Value:=Value-1;
End;
Begin // Nothing because it is a library
End.

The UNIT clause
The unit header starts with the reserved word unit indicating to the compiler. It is a library, not a
program.
Nothing is executed cyclically in the main between BEGIN and END.

In IMPLEMENTATION
The implementation section of a unit is the section that contains the actual code for the unit. The
implementation can have additional declarations of its own, although these declarations are not
accessible to any other application or unit.
In INTERFACE
In the unit interface section, we can declare global constants, data types, variables, procedures and
functions.

The DEC procedure : We can see this Value is passed in parameter with the word VAR in before.
When a parameter is preceded by the VAR clause, it means that the program in the procedure or the
function receiving it can modify it.
In fact, the parameter received by the procedure is not the contents of Value but its address.
Program DEC decreases contents of the variable to the given address.

Page 48

Initialization in a library
If we want to initialize any data the unit uses, you can add an initialization code to the BEGIN END
Section of the unit (Main). When an application uses a unit, the code within the unit's initialization part
is called before any other application code runs.

Let us examine this code:

UNIT // indicate to the compiler that it is a library
Interface
 Procedure Dec (Var Value : Integer); // Procedure exportable to other programs

Implementation

Procedure Dec (Var Value : Integer); // source Code of the DEC procedure
Begin
 Value:=Value-1;
End;

Procedure Initial; // Internal procedure in the library
Begin
 …..
 End;

Begin // Initialization of the library (unit) at the start-up time of the application
 Initial; // Call initial is done only one time
End.

Passing parameters by values and address
When you create procedures and functions, you will have to pass parameters to these procedures and
functions. Two solutions are possible.

Passing by value

Ex: Procedure Test (Value: Integer);
Begin
End;

Begin
 I:=10;
 Test(I); // ** sent by value to TEST procedure
 // here I is always equal to 10 whatever the action in Test
End.

In this procedure, 'I' cannot be modified by the procedure.
 We are able to write: If Value = 10 Then … or Counter:=Value;

The expression Value:=100 will not have any effect on the variable 'I'. Affecting Value in the
procedure modifies the local value but not the original value. A local copy of I is made in the Test
procedure.
Passing by address

Ex : Procedure Test(Var Value : Integer);
Begin
 Value:=Value*2; // *** Modify the value of i *
End;
Begin
 I:=10;
 Test(I); // ** passing to the procedure Test by address *
 // here I is not equal to 10 it depends on the Test procedure
End

Page 49

When passing data to a routine (function or procedure), you can prefix the parameter definition with
Var if the variable itself is to be updated by the routine. This allows a caller to pass data to a routine
that will be enriched by the routine.
Let us take the example of the procedure Inc that allows increasing a variable again.

We could write:

Procedure INC (Var Value : Integer);
Begin
 Value:=Value+1;
End;
Begin
 Inc(I); // ** Increase I by 1
End.

Or writing a function that will do the action:

Function INC (Value : Integer) : Integer;
Begin
 Result:=Value+1;
End;
Begin
 I:=inc(I);
End.

Other example:
Function Inc(Value : Integer) : Integer;
Begin
 Result:=Value+1;
End;
Begin
 R:=1.2;
 R:=Inc(R); // ** send a real to the function and retrieve result in a
real
End.

The INC Function is normally designed to receive and return an Integer. In this case, the compiler
transforms R (a real) into an Integer to adapt to the function and transforms the result returned in
integer into real.
Passing a variable with no type
We can also write:

Procedure Inc (Var Value);
Begin
 Integer(Value):=Integer(Value)+1;
End;

Here the INC procedure receives a non-typed variable and this by address.
It is necessary that the procedure typecasts the variable to exploit it. The INC procedure decides in
the example that value is an integer type.

Page 50

Calling procedures and functions in a DLL

Visual PLC allows calling procedures and functions located in a dynamic link library DLL. This
interface is interesting in the case where you have libraries for scientific cards, or if you decide to
enlarge Visual I/O functionalities written under another language (for example in Visual Pascal, C++,
Delphi).
To use these procedures and functions in a DLL, it is necessary to declare the structure of the function
or the procedure in the INTERFACES part of a unit (vpu). The library is used as a link between Visual
I/O and the DLL.
When you import a routine from a DLL, the procedure or function is imported explicitly by its name.

Let us examine the following declaration:
Unit
Interface
 Function MessageBeep(Utype : Integer) : Integer; StdCall 'user32.dll';
Implementation
Begin
End.

This VPU library allows getting a new function named MessageBeep.
This function is not implemented in the VPU itself but in a DLL named User32.dll.
It is necessary to pass a parameter named Utype (Integer type)to the function.
StdCall allows specifying to the compiler that it must respect the standard mode for passage of
parameters predefined by Microsoft for the 32Bits applications.

In case of MessageBeep, the function in User32.dll is also named MessageBeep.

Attention: respect scrupulously the case sensitive in the declarations
The following declaration is not correct:
Function MESSAGEBEEP(Utype : Integer) : Integer ; StdCall 'user32.dll';

To redefine the name of the function contained in a DLL
You can redefine the interface name of the procedure in the DLL. The following declaration allows it:
Unit
Interface
 Function Beep (Utype : Integer) : Integer; StdCall 'user32.dll' name 'MessageBeep';
Implementation

You define a new exploitable function in Visual I/O whch is Beep and corresponds to MessageBeep in
user32.dll.

Localization of a DLL
It is possible that Visual I/O does not find the called DLL. Then you can copy your DLL into a
Windows directory. For example, you can copy your DLL into C:\Windows. The Visual I/O runtime will
locate this DLL.

You can also specify the complete path for the DLL (not recommended).
Function Go(Utype : Integer) : Integer ; StdCall 'C:\Proj1\Test.dll' name 'Start';

Visual I/O places many data types at the disposal so that the interface with DLL is the most
compatible. However, the generally encountered problem is related to the character strings. In C
language, for example, the type always used is PChar (Pointer on char, ended by the Null character
0). In Pascal, the character strings are different, and the first character is the length. To typecast
(change the type for compatibility) you can use the PChar function from the Windows.pas library
(source is included in Visual I/O).

Example to pass a text to a procedure in a DLL.
Example: ExternFunc(PChar('Hello')); PChar('Hello') returns the address of the first character in
the string ‘Hello’. The PChar function also ADD (if it is not the case) a Null character to the end of the
text string.

Page 51

Example of Visual PLC variable allocated in an external DLL

Let’s consider the Pascal program implemented in a DLL named MyDLL.
This program is allowed to force to 1, 10 Integers in Visual PLC.

Example in Delphi or Visual Pascal :

Library Mydll;
{$C PRELOAD MOVEABLE DISCARDABLE}

 {******** Force to 1 all Integers in Visual I/O or PLC ***********}
Procedure Force(P : Pointer); StdCall;
Var
 I : Integer;
 PTInt : ^Integer; //*** Pointer on Integer
Begin
 PTInt:=P; //**** transfer the Pointer received
 For I:=1 To 10 do
 Begin
 PTInt^:=1; //*** Force the word Visual I/O or Visual PLC to 1
 Inc(PTInt); //*** Pass to the next word
 End;
End;

{******* Exports **************}
 Exports
 Force Index 1;
{******** Your Initialisation ***********}
Begin
End.

To call the procedure Forces in this DLL, it is necessary to declare the prototype in a Visual PLC
library VPU.

Example :

The library Noname.pas allows the interface with the procedure localized in MyDll.com.

Page 52

Let’s now create a functional module calling this procedure (Force).

The All Type allows you to receive an address (checker) in the functional module. This address is
retransmitted to the Force procedure of our DLL.

Let’s declare at least 10 integers (I0 to I10) allowing us to carry out the test.

Let’s place the functional module in a Ladder.

By affecting the B0 bit the functional module is internally valid and call the procedure ‘force’ to pass to
it the adress of the first word (I0)
It is possible to do the same work with any Visual PLC variable. This variable can be an array element.

Launching the real time engine automatically

After development with Visual PLC, programs are saved in an file named PROG.PLC (or other files)
by clicking on the button 'Save Current Configuration ' (to see chapter ' Status of the real time engine').

This text file contains the list of all programs that will be loaded by the engine. This file does not
contain library used by these programs.
If you must change machine, you must transport:

 The programs files (.VPU)
 The library files used (.VPU).

Page 53

Example :

The engine use the programs :

LAD1.VPU and GRAF1.VPU

And the libraries
ADDITION.VPU,
AND2.VPU,
COUNTER.VPU
PEDGE.VPU
SYSPLC.VPU

You must carry these 7 files on the target machine.

To start the real time engine, run the program PLCRUN.EXE found in the directory API32 or PLCRUN
ConfigurationName.PLC

This program searchs the current directory for the file PROG.PLC.
If the file is not present at PlcRun.Exe, search it in the current project.

The PLCRUN.EXE program can be executed automatically in the « Start Group » of Windows.
After the launching, an icon places in the task bar of Windows.

By clicking on this icon a window appears with the list of all programs loaded by the real time engine.

Visualization of programs loaded

By clicking on the icon in the task bar of Windows a window appears:

By clicking on the 'Quit' button, it is possible to stop the real Time engine by striking the password
'System'.

Page 54

Profibus Configuration tool for DPC102 Profibus card

According to the chosen module type, the number of bytes in input and output is displayed. You can
inform the user of the choice of the visual I/O variable (Or Visual PLC) to register in the column Word
Visual PLC.

Word Visual PLC (or Visual I/O): First word receiving bytes read or written from the profibus
equipment.

Command : If no bit is specified, the interrogation of the equipment is made regularly by the card.
If a Visual I/O bit is specified, the interrogation of the concerned equipment is provided when this bit
(Boolean) is set. When the frame has been read (the equipment replied without error), this bit is set to
0 (False) by the card which returns a reception acknowledgement.

W.Dog : WatchDog. If no value is specified, Profibus outputs remains in the state when any frame is
sent by the card. If a value is specified (x100ms), a frame has to be sent regularly by the card before
reaching this value.
If it is not the case, the outputs are reset and the station passes in Bus Fail State.

Comments : Your comments.

Parameters : Enables to display or to modify the initialisation parameters of the station (doubleclick on
cell).

Coms Synchro : If this checkbox is checked, the ‘PCARSDP.VPU’ driver is different, allowing to
chain all profibus equipment every 10 ms systematically. If Coms Synchro is not checked, each
equipment is scanned one by one every 10 ms (or 2ms mini).

Save, the configuration tool compiles a driver according to your configuration. You must put the VPU
PCARSDP.VPU in the real time engine of Visual PLC if you want to start the communication.

For Visual I/O put PCARSDP in Constitution Application/Tasks priority.
.

Page 55

Setting the equipment parameters

Double-click on the parameter column to set each parameter of the concerned module. Below a
module of
4 analog inputs where you must set each canal (4/20ma, 0/10V, PT100 etc..)

Test of the Profibus card and ScanDP.

Click on the button Test Card to test the profibus card (‘loop Back’ Mode) completely.
This command shows the position of Switches on the card. If the card is not detected, it is probable
that the card is in address conflict with other card on the bus or the driver is not installed. Choose an
address in the Combo to search for an adress', the system indicates you the new position of Switches.

Scan DP: Allows to scan connected equipments on the Profibus bus. Because of the speed self-
adaptation, slaves do not reply immediately.
This command must be done several times if necessary.
Some slaves memorize the last speed. It is necessary to shutdown power supply to change it

Page 56

Testing the communication with connected Profibus equipment

Click on the button Dialogs, a grid appears displaying the value of the bytes read and written in the
equipments. You can force some bytes by writing a new value in the concerned cell.
Cells with a grey background in the Equipment column indicate the first byte of the equipment.

It is evident that you can only force the bytes with 'OutPut' statement.
If the equipment replies normally, the text Ok appears, otherwise the number of detected errors
appears in the error column.

Here the first text OK starting to the top corresponds to the equipment #3
Dangerous Interactions with Visual PLC
The PROFIBUS configurator is an external program that generates and compiles a VPU that is the
Profibus driver. This driver PCARSDP.VPU is usable by the real time engine of Visual PLC and by
Visual I/O. In the case you use Visual PLC and Visual I/O together, it is necessary to have only one
PCARDSP.VPU active on your PC.

It is necessary that PCARSDP.VPU is in the priority tasks of Visual I/O or in the real time engine
of Visual PLC BUT NOT IN BOTH.
Generally, the Profibus driver concerns the automation in Visual PLC.

Necessary files to use the Profibus card.
DPConf.DP : The configuration file (contents of the grid) in the application directory.
ARSBT.SYS: The Windows driver. It is in the directory Windows/drivers32
Arsdp.dll : The DLL interface with the configuration file in the directory Windows.

 Note: In the case of Arsoft panel PC file, DPCONF.DP is not necessary in run any more. The
parameters are included in the Profibus driver.

Coms synchro: You have the possibility of changing the frequency of driver’s activation and passing
to 1 ms and multiples. However, considering that Profibus equipment reacts into 1 ms, it is impossible
to scan more than one Profibus slave within 1 ms.

It is necessary if you want to read Profibus slaves quickly which are set the driver to 1 or 2 ms and do
not set Coms synchro.

Page 57

Maintenance of data

Visual PLC allows the total or partial maintenance of data. In other words, you can get back the
context after a power supply shutdown of the PC. For example in your application, the program counts
a number of parts. If the maintenance of some variables is not done, after a shutdown, the application
will not restart the machine correctly if values of variables are not those that are presented before the
shutdown.

For choosing a series of maintenance variables, the Functional module maintenance has to be used.

Let’s consider the next declaration, where BK1 to BK4 and Cpt1 to Cpt3 have to be safeguarded:

This module has 3 parameters to set.
Name : Name of the block of data to safeguard

and to reload at the launching of the
engine Visual PLC.

Fvar : Name of the first variable to safeguard.
Lvar : Name of the consecutive variable to
the last variable to safeguard.

Page 58

So as to undertake this operation, 2 functional modules are placed in the ladder.

The first functional module saves in an appointed block 'Zone1', the variables BK1 to BK4.
The second functional module saves in an appointed block 'Zone2', the variables CPT1 to CPT3.
Explanations :

The parameter fvar has to be informed of the name of the first variable to safeguard. The parameter
Lvar has to be informed of the name of the consecutive variable to the last variable to safeguard. In
other terms the block safeguards variables specified from the first variable to the last variable -1.

You must declare variables consecutively in the global variable editor in order that the functional
module safeguards them by block. If the last variable to safeguard is the last one to be declared,
declare a phoney variable (not used in programs) to create a heel (case in our example of Cpt1 to
Cpt3).

This block uses a complex internal mechanism, allowed to safeguard regularly the variable specified
without disturbing the functioning of the real time engine.

Page 59

To add a password protecting the editor

It is possible to lock access to the editor when you launch it. One dialog box will ask you to strike a
password you have preset.

Add a textual file (for example, with Notepad.exe) containing on a line the password that the operator
must enter to the lunching of the editor.

The text file is MP (without extension).

• It must be localized in the installation directory (basic in C:\API32).
• The first line contains the password to be tested.

Example:
 First line = My Password.

With the launching this window appears:

The programmer must then strike exactly the text « My Password », to reach the editor.

